首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2937篇
  免费   242篇
  国内免费   445篇
  2024年   3篇
  2023年   61篇
  2022年   46篇
  2021年   73篇
  2020年   104篇
  2019年   133篇
  2018年   98篇
  2017年   113篇
  2016年   125篇
  2015年   120篇
  2014年   140篇
  2013年   245篇
  2012年   115篇
  2011年   183篇
  2010年   124篇
  2009年   148篇
  2008年   185篇
  2007年   136篇
  2006年   136篇
  2005年   138篇
  2004年   122篇
  2003年   115篇
  2002年   85篇
  2001年   96篇
  2000年   64篇
  1999年   66篇
  1998年   59篇
  1997年   42篇
  1996年   58篇
  1995年   58篇
  1994年   53篇
  1993年   50篇
  1992年   37篇
  1991年   34篇
  1990年   32篇
  1989年   23篇
  1988年   12篇
  1987年   20篇
  1986年   24篇
  1985年   14篇
  1984年   21篇
  1983年   18篇
  1982年   22篇
  1981年   16篇
  1980年   13篇
  1979年   12篇
  1978年   6篇
  1977年   7篇
  1976年   7篇
  1973年   3篇
排序方式: 共有3624条查询结果,搜索用时 78 毫秒
1.
A series of thirty (30) thiazole analogs were prepared, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for Acetylcholinesterase and butyrylcholinesterase inhibitory potential. All analogs exhibited varied butyrylcholinesterase inhibitory activity with IC50 value ranging between 1.59 ± 0.01 and 389.25 ± 1.75 μM when compared with the standard eserine (IC50, 0.85 ± 0.0001 μM). Analogs 15, 7, 12, 9, 14, 1, 30 with IC50 values 1.59 ± 0.01, 1.77 ± 0.01, 6.21 ± 0.01, 7.56 ± 0.01, 8.46 ± 0.01, 14.81 ± 0.32 and 16.54 ± 0.21 μM respectively showed excellent inhibitory potential. Seven analogs 15, 20, 19, 24, 28, 30 and 25 exhibited good acetylcholinesterase inhibitory potential with IC50 values 21.3 ± 0.50, 35.3 ± 0.64, 36.6 ± 0.70, 44.81 ± 0.81, 46.36 ± 0.84, 48.2 ± 0.06 and 48.72 ± 0.91 μM respectively. All other analogs also exhibited well to moderate enzyme inhibition. The binding mode of these compounds was confirmed through molecular docking.  相似文献   
2.
《Cell》2022,185(20):3753-3769.e18
  1. Download : Download high-res image (311KB)
  2. Download : Download full-size image
  相似文献   
3.
Studies were undertaken to determine whether the effect of alloxan to inactivate a membrane-bound calcium- and calmodulin-dependent protein kinase was specific for the pancreatic islets and whether inactivation of the kinase occurred also after injection of a diabetogenic dose of alloxan into rats. The effect of alloxan was also examined on similar particulate calcium- and calmodulin-dependent kinases present in two other secretory tissues, mammary acini and forebrain. Exposure of alloxan to cell-free preparations of all secretory tissues examined inhibited the calcium- and calmodulin-dependent kinase activities, suggesting that the specificity of alloxan action was not due to the presence in islets of a kinase uniquely sensitive to alloxan. To determine whether the selective effect of alloxan action was mediated at the cellular level, experiments were performed with alloxan presented to intact cells. Whereas alloxan exposure to viable cell preparations of islets and brain decreased the subsequently measured calcium- and calmodulin-dependent protein kinase activity, the activity measured in mammary acini exposed to these alloxan concentrations was unaffected. Injection (i.v.) of a diabetogenic dose of alloxan (50 mg/kg) produced an immediate (10 min) and selective inactivation of the calcium- and calmodulin-dependent protein kinase in pancreatic islests but had no effect on the similar kinases measured in brain and mammary acini. These results indicate that the unique sensitivity of islets to alloxan may result from the ability of alloxan to rapidly gain intracellular access and then inactivate this kinase activity. The selective effect of alloxan injection on this islet protein kinase is consistent with the hypothesis that inactivation of the kinase by alloxan is related to its diabetogenic effect in vivo.  相似文献   
4.
Abstract: The enzymatic hydrolysis of UDP-galactose in rat and calf brain was studied. The hydrolysis occurs in two steps: The first is the conversion of UDP-galactose to galactose-1-phosphate catalyzed by nucleotide pyrophosphatase (EC 3.6.1.9), and the second is the conversion of the latter to free galactose by alkaline phosphatase (EC 3.1.3.1). The overall conversion has a pH optimum of 9.0, but there is considerable activity at pH 7.4, which is the optimum for UDP-galactose:ceramide galactosyltransferase in the synthesis of cerebrosides. Preparations from cytosol from calf brain cerebellum or stem that were enriched in UDP-galactose hydrolytic activity inhibit cerebroside synthesis under conditions optimal for the synthesis. Microsome-rich and nuclear debris fractions contain the highest apparent specific activity among the subcellular fractions studied. Hydrolysis of UDP-galactose occurs in all areas of brain, brainstem having the highest activity. The apparent specific activity in jimpy mouse brain homogenate is nearly twice as high as in the control brain homogenate.  相似文献   
5.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
6.
Loss of nutrients and sediments from agricultural runoff causes eutrophication in surface water. Vegetated buffer zones adjacent to a stream can effectively remove and retain nutrients and sediments. It is, therefore, important to study design criteria which optimise the effect of buffer zones (BZ). This paper describes the influence of four criteria: (i) buffer zone width, (ii) amount of surface runoff water entering the BZ, (iii) seasonal variation and (iv) vegetation type. These parameters were studied after simulated and natural runoff at four different sites in Southern Norway with cold temperate climate. Surface runoff was collected before entering and after passing the BZs. The simulation experiments were short-term experiments carried out over a few days in 1992 and 1993. In the natural runoff experiments, volume proportional mixed samples were collected after each runoff period during 1992–1999. The results show significantly higher removal efficiency (in %) from 10 m wide BZs compared to 5 m widths, however, the specific retention (per m2) is higher in 5 m BZ. Buffer zones can receive particle runoff over several days without a significant decrease in their removal level. Retention efficiency between summer and autumn varied depending on the measured parameter (phosphorus, particles and nitrogen), and there were no significant differences in removal efficiency between summer and winter. The results show no significant differences between forest buffer zones (FBZ) and grass buffer zones (GBZ) regarding their retention efficiency for nitrogen and phosphorus. There was significantly higher retention efficiency in FBZ for particles. Average removal efficiencies from both simulated and natural runoff experiments varied from 60–89%, 37–81% and 81–91% for phosphorus, nitrogen and particles, respectively.  相似文献   
7.
The multifactorial nature of Parkinson’s disease necessitates the development of new chemical entities with inherent ability to address key pathogenic processes. To this end, two series of new symmetrical 1,2- and 1,4-bis(2-aroyl/alkoylimino-5-(2-methoxy-2-oxoethylidene)-4-oxo-thiazolidin-3-yl)benzene derivatives (3a–g and 5a–e) were synthesized in good yields by the cyclization of 1,2- and 1,4-bis(N′-substituted thioureido)benzene intermediates with dimethyl acetylenedicarboxylate (DMAD) in methanol at ambient temperature. The bis-iminothiazolidinone compounds were investigated in vitro for their inhibition of monoamine oxidase (MAO-A & MAO-B) enzymes with the aim to identify new and distinct pharmacophores for the treatment of neurodegenerative disorders like Parkinson’s disease. Most of the designed compounds exhibited good inhibitory efficacy against monoamine oxidases. Compound 5a was identified as the most potent inhibitor of MAO-A depicting an IC50 value of 0.001 μM, a 4-fold stronger inhibitory strength compared to standard inhibitor (clorgyline: IC50 = 0.0045 μM). Molecular docking studies provided insights into enzyme-inhibitor interactions and a rationale for the observed inhibition towards monoamine oxidases.  相似文献   
8.
Abstract Screening of different yeast species showed that they are able to synthesize hydroxymethylglutaryl-CoA (HMGCoA) reductase inhibitors. Crude methanol extracts and the purified inhibitors from Pichia labacensis and Candida cariosilignicola were tested for their biological activity on the solubilized microsomal HMGCoA reductase from Chinese hamster ovary cells. Identification of the inhibitors was studied by thin layer chromatography, high pressure liquid chromatography and mass spectroscopy.  相似文献   
9.
A series of new sulfonamides was prepared starting from 2-oxo-N′-(4-sulfamoylphenyl)-propanehydrazonoyl chloride, a sulfanilamide derivative, which was reacted with aroylhydrazides, amines, or thiols. A library of derivatives incorporating aroylhydrazone, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenyl-methylene)-1,3,4-thiadiazol-3(2H)-yl moieties was thus synthesized. The new compounds were investigated as inhibitors of four α-carbonic anhydrases (CAs, EC 4.2.1.1), the human (h) isoforms hCA I and II, and the bacterial ones recently isolated from the extremophilic bacteria Sulfurihydrogenibium yellostonense (SspCA) and Sulfurihydrogenibium azorense (SazCA). Low nanomolar activity was observed against hCA II (KIs of 0.56–17.1 nM) whereas hCA I was less inhibited by these compounds (KIs of 86.4 nM–32.8 μM). The bacterial CAs were also effectively inhibited by these derivatives (KIs in the range of 0.77–234 nM against SazCA, and of 6.2–89.1 against SspCA, respectively), with several low nanomolar/subnanomolar inhibitors detected against both of them. As SspCA and SazCA are among the most thermostable and catalytically active CAs, it is of interest to find modulators of their activity for potential biotechnologic applications.  相似文献   
10.
Antisense (AS) peptides complementary to the β-bulge surface loop VQGEESNDK (Boraschi loop) of the cytokine interleukin-1β (IL-1β) have been shown to bind IL-1β at the Boraschi loop position, and to inhibit some of the IL-1β-mediated biological effects in vitro. Here we show that primary AS peptide FVITFFSLY inhibits IL-1β-mediated immunostimulation in vivo in a dose-dependent fashion, while inactive on IL-1β-induced inflammation, an effect that takes place independently of the Boraschi loop. To the best of our knowledge, this is the first time that an AS peptide has been used successfully in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号